

63rd FITCE International Congress

26 – 28 September 2024, Kraków, Poland

к-anonymity in Resource Allocation for Vehicle-to-Everything (V2X) Systems

Andres Vejar, **Faysal Marzuk**, Piotr Chołda Institute of Telecommunications AGH University of Krakow, Kraków, Poland

1. Introduction

- Vehicle-to-Everything (V2X) Systems
- Privacy-Enhancing Technologies (PET)

2. System Model

- V2X Communication System Model
- Centralized vs. к-anonymous Allocation Models
- **3.** Results and Evaluation
- 4. Conclusion and Future Work

Introduction Vehicle-to-Everything (V2X) systems

- 6G V2X communication systems are vulnerable to security attacks due to
 - high mobility
 - dynamic topology
 - various communications
- Designing V2X networks that integrate AI technology is challenging because
 - it needs to include robust security mechanisms
 - It needs to consider privacy and ethics

- Built-in privacy to collect and process user data in V2X systems
- Reducing the risk of reidentification and unauthorized monitoring
- In designing secure V2X systems, anonymization techniques are used to
 - protect identity of system's users
 - reduce specific vehicles' information
- Privacy-enhancing technologies (PETs) are required, including methods of
 - differential privacy
 - data anonymization

Introduction 6G V2X privacy on *compromised* resource allocation

- If resource allocation systems are infiltrated by malicious entities, revealing sensitive information such as vehicle locations poses a risk to user privacy
 - Identification of each vehicle is available to attackers
 - Acquired information can be used to escalate attacks to other system's elements
- It is important to reduce the attack surface in the infrastructure
 - Zero-trust architectures / privacy by design
 - Essential data security and privacy preservation
- Addressing requirements for 6G V2X allocation process

V2X Communication System

Figure 2: An example of a V2X communication system.

Centralized Allocation System

- A centralized allocation system requires specific information of the participating vehicles
- The vehicles communicates the information to get assigned to one RSU
- The centralized allocation system generate an optimal (or near optimal) assignation for all the participating vehicles
- The vehicles upload tasks to the assigned RSU

To solve the allocation problem in a realistic scenario, the vehicle information includes:

- communication demand: $D_v \in [10 60]$ kbits
- computation demand: $\phi_v \in [100 150]$ cycles/bit
- transmission power: $P_v \in [23 33] dBm$

CE Centralized Allocation Privacy Risk

- (D_v, ϕ_v, P_v) is used in the centralized allocation to calculate
 - communication and computation delays
 - energy consumption
- If the allocation system is breached, the vehicle information can be exploited to uncover, monitor and further compromise individual vehicles.
- Design V2X systems with privacy enhancing techniques reduce the probability of unauthorized tracking and re-identification.

Results & Evaluation

- V2V communication to achieve *k*-anonymity through proximity clusters
- Assuming that V2V communication is secured in its radius of operation
- Triplet (D_v, ϕ_v, P_v) is distributed in vehicle's proximity cluster
- Aggregate measurement is pooled into its average value
- Each vehicle transmits to RSUs aggregated triplet values $< D_v, \phi_v, P_v >$
- gNB estimates SINR values of each vehicle with respect to each RSU
- SINR values are aggregated for each proximity cluster < SINR >
- Cluster's membership is verified by vehicles sharing the same $< D_{v}, \phi_{v}, P_{v} >$
- *k*-private allocation system receives only
 - < D_v , ϕ_v , P_v > from vehicles
 - < SINR > from gNB

Results & Evaluation (cont'd)

- We compare *k*-anonymous V2X allocation vs. centralized allocation models
- Scenarios with densities of $126 \ RSUs/km^2$ and $1000 \ vehicles/km^2$
- For 190 vehicles not all constraints are satisfied
- Reduced energy consumption in *k*-anonymous version

Allocation	selected/available RSUs	# Vehicles	Energy
Centralized	2/4	32	0.002432
k-anonymous	2/4	32	0.002459
Centralized	4/16	127	0.005532
k-anonymous	5/16	127	0.006830
Centralized	7/24	190	0.009790
k-anonymous	7/24	190	0.008454

Conclusion & Future Work

- *k*-anonymity for privacy and efficiency requirements in V2X networks
- *k*-anonymity method used to maintain and preserve location privacy
- Protection against inference and gradient leakage attacks
- Our implementation shows how variations in optimal allocations are affected when PET is applied to V2X systems
- More advanced techniques, considering the incorporation of online allocation by AI models

63rd FITCE International Congress

26 – 28 September 2024, Kraków, Poland

Thank you for your attention!

